Abstract: We recently established a new plasma peptidomic technique and comprehensively identified a large number of low-molecular weight and low-abundance native peptides using a single drop of human plasma. To discover a novel polypeptide that potently modulates the cardiovascular system, we performed a bioinformatics analysis of the large-scale identification results, sequentially synthesized the selected peptide sequences, tested their biological activities, and identified a 30-amino-acid proatherogenic peptide, GIP_HUMAN[22-51], as a potent proatherosclerotic peptide hormone. GIP_HUMAN[22-51] has a common precursor with the glucose-dependent insulinotropic polypeptide (GIP) and is located immediately N-terminal to GIP. Chronic infusion of GIP_HUMAN[22-51] into ApoE-/- mice accelerated the development of aortic atherosclerotic lesions, which were inhibited by co-infusions with an anti-GIP_HUMAN[22-51] antibody. GIP_HUMAN[22-51] increased the serum concentrations of many inflammatory and proatherogenic proteins, whereas neutralising antibodies reduced their levels. GIP_HUMAN[22-51] induced IκB-α degradation and nuclear translocation of NF-κB in human vascular endothelial cells and macrophages. Immunoreactive GIP_HUMAN[22-51] was detected in human tissues but there was no colocalization with the GIP. The plasma GIP_HUMAN[22-51] concentration in healthy humans determined using a stable-isotope tagged peptide was approximately 0.6 nM. This study discovered a novel endogenous proatherogenic peptide by using a human plasma native peptidomic resource.
Social Network Confirmation