Catalog # |
Size |
Price |
|
---|---|---|---|
037-14 | 100 µg | $245 |
Val-Leu-Leu-Ile-Pro-Glu-Glu-Glu-Ile-Ser-Asn-Leu-Gln-His-Phe-Leu-Arg-Val-Val-Asn-Gly-Ser-Pro-Ile-Ser-Phe-Asn-Met-Gly-Pro-Gln-Thr
|
3580.16 | |
| ≥ 95% |
| Exhibits correct M.W. |
|
Up to 6 months in lyophilized form at 0-5ºC. For best results, rehydrate just before use. Aliquot before freezing to avoid repeated freeze-thaw cycles. |
| White powder |
| Each vial contains 100 μg of NET peptide. |
Abstract: Maintenance of renal function and fluid transport are essential for vertebrates and invertebrates to adapt to physiological and pathological challenges. Human patients with malignant tumours frequently develop detrimental renal dysfunction and oliguria, and previous studies suggest the involvement of chemotherapeutic toxicity and tumour-associated inflammation. However, how tumours might directly modulate renal functions remains largely unclear. Here, using conserved tumour models in Drosophila melanogaster, we characterized isoform F of ion transport peptide (ITPF) as a fly antidiuretic hormone that is secreted by a subset of yki3SA gut tumour cells, impairs renal function and causes severe abdomen bloating and fluid accumulation. Mechanistically, tumour-derived ITPF targets the G-protein-coupled receptor TkR99D in stellate cells of Malpighian tubules-an excretory organ that is equivalent to renal tubules4-to activate nitric oxide synthase-cGMP signalling and inhibit fluid excretion. We further uncovered antidiuretic functions of mammalian neurokinin 3 receptor (NK3R), the homologue of fly TkR99D, as pharmaceutical blockade of NK3R efficiently alleviates renal tubular dysfunction in mice bearing different malignant tumours. Together, our results demonstrate a novel antidiuretic pathway mediating tumour-renal crosstalk across species and offer therapeutic opportunities for the treatment of cancer-associated renal dysfunction.
Xu W, Li G, Chen Y, Ye X, Song W. A novel antidiuretic hormone governs tumour-induced renal dysfunction. Nature. 2023;624(7991):425-432.
Abstract: Insects are the largest group of animals. They are capable of surviving in virtually all environments from arid deserts to the freezing permafrost of polar regions. This success is due to their great capacity to tolerate a range of environmental stresses, such as low temperature. Cold/freezing stress affects many physiological processes in insects, causing changes in main metabolic pathways, cellular dehydration, loss of neuromuscular function, and imbalance in water and ion homeostasis. The neuroendocrine system and its related signaling mediators, such as neuropeptides and biogenic amines, play central roles in the regulation of the various physiological and behavioral processes of insects and hence can also potentially impact thermal tolerance. In response to cold stress, various chemical signals are released either via direct intercellular contact or systemically.
Lubawy J, et al. Role of the insect neuroendocrine system in the response to cold stress. Front Physiol. 2020;11:376.
Abstract: Animals need to continuously adjust their water metabolism to the internal and external conditions. Homeostasis of body fluids thus requires tight regulation of water intake and excretion, and a balance between ingestion of water and solid food. Here, we investigated how these processes are coordinated in Drosophila melanogaster. We identified the first thirst-promoting and anti-diuretic hormone of Drosophila, encoded by the gene Ion transport peptide (ITP). This endocrine regulator belongs to the CHH (crustacean hyperglycemic hormone) family of peptide hormones. Using genetic gain- and loss-of-function experiments, we show that ITP signaling acts analogous to the human vasopressin and renin-angiotensin systems; expression of ITP is elevated by dehydration of the fly, and the peptide increases thirst while repressing excretion, promoting thus conservation of water resources. ITP responds to both osmotic and desiccation stress, and dysregulation of ITP signaling compromises the fly's ability to cope with these stressors. In addition to the regulation of thirst and excretion, ITP also suppresses food intake. Altogether, our work identifies ITP as an important endocrine regulator of thirst and excretion, which integrates water homeostasis with feeding of Drosophila
Gáliková M, Dircksen H, Nässel DR. The thirsty fly: Ion transport peptide (Itp) is a novel endocrine regulator of water homeostasis in Drosophila. Taghert PH, ed. PLoS Genet. 2018;14(8):e1007618.
No References
Catalog# | Product | Size | Price | Buy Now |
---|
Social Network Confirmation